Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Intervalo de año de publicación
1.
Plant Physiol Biochem ; 197: 107644, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36996636

RESUMEN

Plant bioactive compounds provide novel straightforward approaches to control plant diseases. Rosemary (Salvia rosmarinus)-derived extracts carry many prominent pharmacological activities, including antimicrobial and antioxidant, mainly due to its phenolic compounds, rosmarinic acid (RA), carnosic acid and carnosol. However, the effects of these extracts on plant diseases are still unknown, which constrains its potential application as bioprotectant in the agricultural production. In this study we demonstrate the antiviral effect of the aqueous rosemary extract (ARE) against tobacco necrosis virus strain A (TNVA) in ARE-treated tobacco (Nicotiana tabacum) plants. Our results show that ARE-treatment enhances plant defense response, contributing to reduce virus replication and systemic movement in tobacco plants. RA, the main phenolic compound detected in this extract, is one of the main inducers of TNVA control. The ARE-induced protection in TNVA-infected plants was characterized by the expression of H2O2 scavengers and defense-related genes, involving salicylic acid- and jasmonic acid-regulated pathways. Furthermore, treatment with ARE in lemon (Citrus limon) and soybean (Glycine max) leaves protects the plants against Xanthomonas citri subsp. citri and Diaporthe phaseolorum var. meridionalis, respectively. Additionally, ARE treatment also promotes growth and development, suggesting a biostimulant activity in soybean. These results open the way for the potential use of ARE as a bioprotective agent in disease management.


Asunto(s)
Rosmarinus , Salvia , Extractos Vegetales/farmacología , Peróxido de Hidrógeno , Fenoles , Antioxidantes/farmacología , Ácido Rosmarínico
2.
Front Microbiol ; 13: 1006962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338045

RESUMEN

Huanglongbing (HLB), the current major threat for Citrus species, is caused by intracellular alphaproteobacteria of the genus Candidatus Liberibacter (CaL), with CaL asiaticus (CLas) being the most prevalent species. This bacterium inhabits phloem cells and is transmitted by the psyllid Diaphorina citri. A gene encoding a putative serralysin-like metalloprotease (CLIBASIA_01345) was identified in the CLas genome. The expression levels of this gene were found to be higher in citrus leaves than in psyllids, suggesting a function for this protease in adaptation to the plant environment. Here, we study the putative role of CLas-serralysin (Las1345) as virulence factor. We first assayed whether Las1345 could be secreted by two different surrogate bacteria, Rhizobium leguminosarum bv. viciae A34 (A34) and Serratia marcescens. The protein was detected only in the cellular fraction of A34 and S. marcescens expressing Las1345, and increased protease activity of those bacteria by 2.55 and 4.25-fold, respectively. In contrast, Las1345 expressed in Nicotiana benthamiana leaves did not show protease activity nor alterations in the cell membrane, suggesting that Las1345 do not function as a protease in the plant cell. Las1345 expression negatively regulated cell motility, exopolysaccharide production, and biofilm formation in Xanthomonas campestris pv. campestris (Xcc). This bacterial phenotype was correlated with reduced growth and survival on leaf surfaces as well as reduced disease symptoms in N. benthamiana and Arabidopsis. These results support a model where Las1345 could modify extracellular components to adapt bacterial shape and appendages to the phloem environment, thus contributing to virulence.

3.
Front Microbiol ; 12: 661547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421834

RESUMEN

'Candidatus Liberibacter asiaticus' is known as the most pathogenic organism associated with citrus greening disease. Since its publicized emergence in Florida in 2005, 'Ca. L. asiaticus' remains unculturable. Currently, a limited number of potential disease effectors have been identified through in silico analysis. Therefore, these potential effectors remain poorly characterized and do not fully explain the complexity of symptoms observed in citrus trees infected with 'Ca. L. asiaticus.' LotP has been identified as a potential effector and have been partially characterized. This protein retains structural homology to the substrate binding domain of the Lon protease. LotP interacts with chaperones like GroEL, Hsp40, DnaJ, and ClpX and may exercise its biological role through interactions with different proteins involved in proteostasis networks. Here, we evaluate the interactome of LotP-revealing a new protein-protein interaction target (Lon-serine protease) and its effect on citrus plant tissue integrity. We found that via protein-protein interactions, LotP can enhance Lon protease activity, increasing the degradation rate of its specific targets. Infiltration of purified LotP strained citrus plant tissue causing photoinhibition and chlorosis after several days. Proteomics analysis of LotP tissues recovering after the infiltration revealed a large abundance of plant proteins associated with the stabilization and processing of mRNA transcripts, a subset of important transcription factors; and pathways associated with innate plant defense were highly expressed. Furthermore, interactions and substrate binding module of LotP suggest potential interactions with plant proteins, most likely proteases.

4.
Mol Plant Pathol ; 20(10): 1394-1407, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31274237

RESUMEN

Transcription activator-like effectors (TALEs) are important effectors of Xanthomonas spp. that manipulate the transcriptome of the host plant, conferring susceptibility or resistance to bacterial infection. Xanthomonas citri ssp. citri variant AT (X. citri AT ) triggers a host-specific hypersensitive response (HR) that suppresses citrus canker development. However, the bacterial effector that elicits this process is unknown. In this study, we show that a 7.5-repeat TALE is responsible for triggering the HR. PthA4AT was identified within the pthA repertoire of X. citri AT followed by assay of the effects on different hosts. The mode of action of PthA4AT was characterized using protein-binding microarrays and testing the effects of deletion of the nuclear localization signals and activation domain on plant responses. PthA4AT is able to bind DNA and activate transcription in an effector binding element-dependent manner. Moreover, HR requires PthA4AT nuclear localization, suggesting the activation of executor resistance (R) genes in host and non-host plants. This is the first case where a TALE of unusually short length performs a biological function by means of its repeat domain, indicating that the action of these effectors to reprogramme the host transcriptome following nuclear localization is not limited to 'classical' TALEs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología , Xanthomonas/metabolismo , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , Citrus/microbiología , Nicotiana/microbiología
5.
Plant Mol Biol ; 93(6): 607-621, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28155188

RESUMEN

Transgenic expression of the pepper Bs2 gene confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic strains which contain the avrBs2 avirulence gene in susceptible pepper and tomato varieties. The avrBs2 gene is highly conserved among members of the Xanthomonas genus, and the avrBs2 of Xcv shares 96% homology with the avrBs2 of Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker disease. A previous study showed that the transient expression of pepper Bs2 in lemon leaves reduced canker formation and induced plant defence mechanisms. In this work, the effect of the stable expression of Bs2 gene on citrus canker resistance was evaluated in transgenic plants of Citrus sinensis cv. Pineapple. Interestingly, Agrobacterium-mediated transformation of epicotyls was unsuccessful when a constitutive promoter (2× CaMV 35S) was used in the plasmid construction, but seven transgenic lines were obtained with a genetic construction harbouring Bs2 under the control of a pathogen-inducible promoter, from glutathione S-transferase gene from potato. A reduction of disease symptoms of up to 70% was observed in transgenic lines expressing Bs2 with respect to non-transformed control plants. This reduction was directly dependent on the Xcc avrBs2 gene since no effect was observed when a mutant strain of Xcc with a disruption in avrBs2 gene was used for inoculations. Additionally, a canker symptom reduction was correlated with levels of the Bs2 expression in transgenic plants, as assessed by real-time qPCR, and accompanied by the production of reactive oxygen species. These results indicate that the pepper Bs2 resistance gene is also functional in a family other than the Solanaceae, and could be considered for canker control.


Asunto(s)
Capsicum/genética , Citrus sinensis/genética , Citrus sinensis/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas campestris/patogenicidad , Agrobacterium tumefaciens/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Brotes de la Planta/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transformación Genética
6.
Mol Plant Microbe Interact ; 29(9): 688-699, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27464764

RESUMEN

Xanthan, the main exopolysaccharide (EPS) synthesized by Xanthomonas spp., contributes to bacterial stress tolerance and enhances attachment to plant surfaces by helping in biofilm formation. Therefore, xanthan is essential for successful colonization and growth in planta and has also been proposed to be involved in the promotion of pathogenesis by calcium ion chelation and, hence, in the suppression of the plant defense responses in which this cation acts as a signal. The aim of this work was to study the relationship between xanthan structure and its role as a virulence factor. We analyzed four Xanthomonas campestris pv. campestris mutants that synthesize structural variants of xanthan. We found that the lack of acetyl groups that decorate the internal mannose residues, ketal-pyruvate groups, and external mannose residues affects bacterial adhesion and biofilm architecture. In addition, the mutants that synthesized EPS without pyruvilation or without the external mannose residues did not develop disease symptoms in Arabidopsis thaliana. We also observed that the presence of the external mannose residues and, hence, pyruvilation is required for xanthan to suppress callose deposition as well as to interfere with stomatal defense. In conclusion, pyruvilation of xanthan seems to be essential for Xanthomonas campestris pv. campestris virulence.


Asunto(s)
Arabidopsis/microbiología , Biopelículas/crecimiento & desarrollo , Glucanos/metabolismo , Enfermedades de las Plantas/microbiología , Polisacáridos Bacterianos/química , Xanthomonas campestris/patogenicidad , Interacciones Huésped-Patógeno , Mutación , Hojas de la Planta/microbiología , Estomas de Plantas/microbiología , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Ácido Pirúvico/química , Virulencia , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Xanthomonas campestris/genética , Xanthomonas campestris/crecimiento & desarrollo , Xanthomonas campestris/fisiología
7.
Microbiology (Reading) ; 159(Pt 9): 1911-1919, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23813675

RESUMEN

Xanthomonas citri subsp. citri (Xcc) develops a biofilm structure both in vitro and in vivo. Despite all the progress achieved by studies regarding biofilm formation, many of its mechanisms remain poorly understood. This work focuses on the identification of new genes involved in biofilm formation and how they are related to motility, virulence and chemotaxis in Xcc. A Tn5 library of approximately 6000 Xcc (strain 306) mutants was generated and screened to search for biofilm formation defective strains. We identified 23 genes not previously associated with biofilm formation. The analysis of the 23 mutants not only revealed the involvement of new genes in biofilm formation, but also reinforced the importance of exopolysaccharide production, motility and cell surface structures in this process. This collection of biofilm-defective mutants underscores the multifactorial genetic programme underlying the establishment of biofilm in Xcc.


Asunto(s)
Biopelículas , Citrus/microbiología , Mutación , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biblioteca de Genes , Mutagénesis Insercional , Xanthomonas/fisiología
8.
Mol Plant Pathol ; 13(9): 1010-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22738424

RESUMEN

Xanthomonas citri ssp. citri (Xcc) is the causal agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. A biofilm-deficient mutant was identified in a screening of a transposon mutagenesis library of the Xcc 306 strain constructed using the commercial Tn5 transposon EZ-Tn5 Tnp Transposome (Epicentre). Sequence analysis of a mutant obtained in the screening revealed that a single copy of the EZ-Tn5 was inserted at position 446 of hrpM, a gene encoding a putative enzyme involved in glucan synthesis. We demonstrate for the first time that the product encoded by the hrpM gene is involved in ß-1,2-glucan synthesis in Xcc. A mutation in hrpM resulted in no disease symptoms after 4 weeks of inoculation in lemon and grapefruit plants. The mutant also showed reduced ability to swim in soft agar and decreased resistance to H(2)O(2) in comparison with the wild-type strain. All defective phenotypes were restored to wild-type levels by complementation with the plasmid pBBR1-MCS containing an intact copy of the hrpM gene and its promoter. These results indicate that the hrpM gene contributes to Xcc growth and adaptation in its host plant.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Glucanos/biosíntesis , Xanthomonas/fisiología , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Citrus/efectos de los fármacos , Citrus/microbiología , Flagelos/efectos de los fármacos , Flagelos/fisiología , Genes Bacterianos/genética , Peróxido de Hidrógeno/farmacología , Viabilidad Microbiana/efectos de los fármacos , Movimiento/efectos de los fármacos , Mutación/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Virulencia/efectos de los fármacos , Xanthomonas/efectos de los fármacos , Xanthomonas/genética
9.
Eur J Drug Metab Pharmacokinet ; 36(2): 71-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21448778

RESUMEN

Eperisone hydrochloride (4'-ethyl-2-methyl-3-piperidinopropiophenone hydrochloride) is a muscle relaxant agent, widely used in the treatment of patients with muscular contractures, low back pain or spasticity. Because of its mechanism of action (inhibition of gamma-efferent firing and local vasodilatation activity), side effects on central nervous system are rarely observed. A sensitive liquid chromatography-electrospray ionization-mass spectrometry method for determination of eperisone in human plasma has been developed, with a lower limit of quantification of 0.01 ng/mL. The method was applied to a pharmacokinetic study in 12 healthy volunteers given eperisone 100 mg as single dose on day 1 and three times daily on days 2 to 4. Eperisone was rapidly absorbed after oral administration (T (max) = 1.6 h) as it was expected by its fast-onset relaxant activity. Moreover, eperisone underwent a rapid elimination from the body (biological half-life 1.87 h), which was not modified during the repeated dosing as suggested by the C (max) cumulation observed, not different from that expected for a t (1/2) of 1.87 h as suggested by the similar and negligible plasma concentration values (0.063 and 0.067 ng/mL) measured on day 4 before the morning dose and 12 h after evening dose, thus ruling out any potential risk for drug accumulation. Thus, the pharmacokinetic characteristics of eperisone provide further justification for its tolerability in patients with low back pain or spastic palsy, in which the drug is given for periods ranging from few days to several months, respectively.


Asunto(s)
Relajantes Musculares Centrales/farmacocinética , Propiofenonas/farmacocinética , Adolescente , Adulto , Algoritmos , Análisis de Varianza , Área Bajo la Curva , Cromatografía Líquida de Alta Presión , Semivida , Humanos , Masculino , Persona de Mediana Edad , Relajantes Musculares Centrales/análisis , Propiofenonas/análisis , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Adulto Joven
10.
Microbiology (Reading) ; 157(Pt 3): 819-829, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21109564

RESUMEN

Xanthomonas axonopodis pv. citri (Xac) is the causative agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. To evaluate the participation of the single flagellum of Xac in biofilm formation, mutants in the fliC (flagellin) and the flgE (hook) genes were generated. Swimming motility, assessed on 0.25 % agar plates, was markedly reduced in fliC and flgE mutants. However, the fliC and flgE mutants exhibited a flagellar-independent surface translocation on 0.5 % agar plates. Mutation of either the rpfF or the rpfC gene, which both encode proteins involved in cell-cell signalling mediated by diffusible signal factor (DSF), led to a reduction in both flagellar-dependent and flagellar-independent surface translocation, indicating a regulatory role for DSF in both types of motility. Confocal laser scanning microscopy of biofilms produced in static culture demonstrated that the flagellum is also involved in the formation of mushroom-shaped structures and water channels, and in the dispersion of biofilms. The presence of the flagellum was required for mature biofilm development on lemon leaf surfaces. The absence of flagellin produced a slight reduction in Xac pathogenicity and this reduction was more severe when the complete flagellum structure was absent.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Citrus/microbiología , Flagelos/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Xanthomonas axonopodis/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/fisiología , Flagelina/genética , Flagelina/metabolismo , Mutación , Xanthomonas axonopodis/crecimiento & desarrollo , Xanthomonas axonopodis/fisiología
11.
Plant Biotechnol J ; 9(3): 394-407, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20809929

RESUMEN

Citrus is an economically important fruit crop that is severely afflicted by citrus canker, a disease caused by the bacterial phytopathogen, Xanthomonas citri subsp. citri (Xcc). GenBank houses a large collection of Expressed Sequence Tags (ESTs) enriched with transcripts generated during the defence response against this pathogen; however, there are currently no strategies in citrus to assess the function of candidate genes. This has greatly limited research as defence signalling genes are often involved in multiple pathways. In this study, we demonstrate the efficacy of RNA interference (RNAi) as a functional genomics tool to assess the function of candidate genes involved in the defence response of Citrus limon against the citrus canker pathogen. Double-stranded RNA expression vectors, encoding hairpin RNAs for citrus host genes, were delivered to lemon leaves by transient infiltration with transformed Agrobacterium. As proof of principle, we have established silencing of citrus phytoene desaturase (PDS) and callose synthase (CalS1) genes. Phenotypic and molecular analyses showed that silencing vectors were functional not only in lemon plants but also in other species of the Rutaceae family. Using silencing of CalS1, we have demonstrated that plant cell wall-associated defence is the principal initial barrier against Xanthomonas infection in citrus plants. Additionally, we present here results that suggest that H2O2 accumulation, which is suppressed by xanthan from Xcc during pathogenesis, contributes to inhibition of xanthan-deficient Xcc mutant growth either in wild-type or CalS1-silenced plants. With this work, we have demonstrated that high-throughput reverse genetic analysis is feasible in citrus.


Asunto(s)
Citrus/inmunología , Citrus/microbiología , Glucosiltransferasas/metabolismo , Interferencia de ARN , Xanthomonas/inmunología , Citrus/enzimología , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Mutación/genética , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/genética , Polisacáridos Bacterianos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Appl Microbiol Biotechnol ; 87(2): 467-77, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20449739

RESUMEN

In this review, we summarise the current knowledge on three pathogens that exhibit distinct tissue specificity and modes of pathogenesis in citrus plants. Xanthomonas axonopodis pv. citri causes canker disease and invades the host leaf mesophyll tissue through natural openings and can also survive as an epiphyte. Xylella fastidiosa and Candidatus Liberibacter are vectored by insects and proliferate in the vascular system of the host, either in the phloem (Candidatus Liberibacter) or xylem (X. fastidiosa) causing variegated chlorosis and huanglongbing diseases, respectively. Candidatus Liberibacter can be found within host cells and is thus unique as an intracellular phytopathogenic bacterium. Genome sequence comparisons have identified groups of species-specific genes that may be associated with the particular lifestyle, mode of transmission or symptoms produced by each phytopathogen. In addition, components that are conserved amongst bacteria may have diverse regulatory actions underpinning the different bacterial lifestyles; one example is the divergent role of the Rpf/DSF cell-cell signalling system in X. citri and X. fastidiosa. Biofilm plays a key role in epiphytic fitness and canker development in X. citri and in the symptoms produced by X. fastidiosa. Bacterial aggregation may be associated with vascular occlusion of the xylem vessels and symptomatology of variegated chlorosis.


Asunto(s)
Bacterias/patogenicidad , Citrus/microbiología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia
13.
Mol Plant Microbe Interact ; 23(4): 394-405, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20192827

RESUMEN

To evaluate the role of salicylic acid (SA) in Nb-mediated hypersensitive resistance to Potato virus X (PVX) avirulent strain ROTH1 in Solanum tuberosum, we have constructed SA-deficient transgenic potato plant lines by overexpressing the bacterial enzyme salicylate hydroxylase (NahG), which degrades SA. Evaluation of these transgenic lines revealed hydrogen peroxide accumulation and spontaneous lesion formation in an age- and light-dependent manner. In concordance, NahG potato plants were more sensitive to treatment with methyl viologen, a reactive oxygen species-generating compound. In addition, when challenged with PVX ROTH1, NahG transgenic lines showed a decreased disease-resistance response to infection and were unable to induce systemic acquired resistance. However, the avirulent viral effector, the PVX 25-kDa protein, does induce expression of the pathogenesis-related gene PR-1a in NahG potato plants. Taken together, our data indicate that SA is involved in local and systemic defense responses mediated by the Nb gene in Solanum tuberosum. This is the first report to show that basal levels of SA correlate with hypersensitive resistance to PVX.


Asunto(s)
Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Potexvirus/inmunología , Ácido Salicílico/metabolismo , Solanum tuberosum/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética
14.
Mol Plant Microbe Interact ; 20(10): 1222-30, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17918624

RESUMEN

The phytopathogenic bacterium Xanthomonas axonopodis pv. citri is responsible for the canker disease affecting citrus plants throughout the world. Here, we have evaluated the role of bacterial attachment and biofilm formation in leaf colonization during canker development on lemon leaves. Crystal violet staining and confocal laser scanning microscopy analysis of X. axonopodis pv. citri strains expressing the green fluorescent protein were used to evaluate attachment and biofilm formation on abiotic and biotic (leaf) surfaces. Wild-type X. axonopodis pv. citri attached to and formed a complex, structured biofilm on glass in minimal medium containing glucose. Similar attachment and structured biofilm formation also were seen on lemon leaves. An X. axonopodis pv. citri gumB mutant strain, defective in production of the extracellular polysaccharide xanthan, did not form a structured biofilm on either abiotic or biotic surfaces. In addition, the X. axonopodis pv. citri gumB showed reduced growth and survival on leaf surfaces and reduced disease symptoms. These findings suggest an important role for formation of biofilms in the epiphytic survival of X. axonopodis pv. citri prior to development of canker disease.


Asunto(s)
Biopelículas , Citrus/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas axonopodis/fisiología , Xanthomonas axonopodis/patogenicidad , Adhesión Bacteriana , Citrus/metabolismo , Hojas de la Planta/microbiología , Polisacáridos Bacterianos/biosíntesis , Virulencia , Xanthomonas axonopodis/genética
15.
Am J Clin Nutr ; 86(3): 775-80, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17823445

RESUMEN

BACKGROUND: Bacterial intestinal glucosidases exert an important role in isoflavone absorption. Insoluble dietary fibers such as inulin may stimulate the growth of these bacteria in the colon and, hence, stimulate the absorption of these substances in subjects who may need isoflavone supplementation. OBJECTIVE: The objective was to assess the influence of inulin on plasma isoflavone concentrations after intake of soybean isoflavones in healthy postmenopausal women. DESIGN: Twelve healthy postmenopausal women participated in a randomized, double-blind, crossover study. They consumed 40 mg of a conjugated form of soybean isoflavones (6 mg daidzein and 18 mg genistein as free form) with or without 3.66 g inulin twice daily in two 21-d experimental phases. Blood samples were collected 0, 1, 2, 3, 4, 6, 10, 12, and 24 h after intake of isoflavones with breakfast and dinner at the end of each 21-d experimental phase. Plasma concentrations of isoflavones were assessed by HPLC with an electrochemical detector. RESULTS: Plasma 24-h areas under the curve indicated that the intake of soybean isoflavones with inulin for 21 d was followed by higher plasma concentrations of daidzein and genistein (38% and 91%, respectively) compared with the formulation without inulin. Furthermore, the time for the maximum concentration of daidzein and genistein appeared to be lower after the 21-d intake of soybean isoflavones, with or without inulin. However, the time for the maximum concentration of daidzein and genistein after supplementation with the inulin-containing formulation on day 21 was not significantly different from that after supplementation with the formulation without inulin. CONCLUSIONS: Inulin may increase the apparent plasma concentrations of the soybean isoflavones daidzein and genistein in postmenopausal women. The higher plasma concentrations of the 2 isoflavones suggests that the absorption of each was facilitated by the presence of inulin.


Asunto(s)
Glycine max/química , Absorción Intestinal/efectos de los fármacos , Inulina/farmacología , Isoflavonas/farmacocinética , Posmenopausia/sangre , Área Bajo la Curva , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión , Estudios Cruzados , Fibras de la Dieta/farmacología , Método Doble Ciego , Femenino , Genisteína/sangre , Genisteína/farmacocinética , Humanos , Isoflavonas/sangre , Persona de Mediana Edad
16.
Plant Cell ; 19(6): 2077-89, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17601826

RESUMEN

Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic bacterium-plant interactions, their precise roles are unclear. Here, we examined the role of cyclic beta-(1,2)-glucan in the virulence of the black rot pathogen Xanthomonas campestris pv campestris (Xcc). Disruption of the Xcc nodule development B (ndvB) gene, which encodes a glycosyltransferase required for cyclic glucan synthesis, generated a mutant that failed to synthesize extracellular cyclic beta-(1,2)-glucan and was compromised in virulence in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Infection of the mutant bacterium in N. benthamiana was associated with enhanced callose deposition and earlier expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Application of purified cyclic beta-(1,2)-glucan prior to inoculation of the ndvB mutant suppressed the accumulation of callose deposition and the expression of PR-1 in N. benthamiana and restored virulence in both N. benthamiana and Arabidopsis plants. These effects were seen when cyclic glucan and bacteria were applied either to the same or to different leaves. Cyclic beta-(1,2)-glucan-induced systemic suppression was associated with the transport of the molecule throughout the plant. Systemic suppression is a novel counterdefensive strategy that may facilitate pathogen spread in plants and may have important implications for the understanding of plant-pathogen coevolution and for the development of phytoprotection measures.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/metabolismo , Nicotiana/inmunología , Nicotiana/metabolismo , beta-Glucanos/metabolismo , Arabidopsis/microbiología , Relación Dosis-Respuesta a Droga , Inmunidad Innata , Enfermedades de las Plantas/inmunología , Hojas de la Planta/microbiología , Transducción de Señal , Factores de Tiempo , Nicotiana/microbiología , Factores de Virulencia , Xanthomonas campestris/patogenicidad
17.
Environ Microbiol ; 9(8): 2101-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17635553

RESUMEN

Virulence of the black rot pathogen Xanthomonas campestris pv. campestris (Xcc) is regulated by cell-cell signalling involving the diffusible signal factor DSF. Synthesis and perception of DSF require products of genes within the rpf cluster (for regulation of pathogenicity factors). RpfF directs DSF synthesis whereas RpfC and RpfG are involved in DSF perception. Here we have examined the role of the rpf/DSF system in biofilm formation in minimal medium using confocal laser-scanning microscopy of GFP-labelled bacteria. Wild-type Xcc formed microcolonies that developed into a structured biofilm. In contrast, an rpfF mutant (DSF-minus) and an rpfC mutant (DSF overproducer) formed only unstructured arrangements of bacteria. A gumB mutant, defective in xanthan biosynthesis, was also unable to develop the typical wild-type biofilm. Mixed cultures of gumB and rpfF mutants formed a typical biofilm in vitro. In contrast, in mixed cultures the rpfC mutant prevented the formation of the structured biofilm by the wild-type and did not restore wild-type biofilm phenotypes to gumB or rpfF mutants. These effects on structured biofilm formation were correlated with growth and disease development by Xcc strains in Nicotiana benthamiana leaves. These findings suggest that DSF signalling is finely balanced during both biofilm formation and virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas campestris/fisiología , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Microscopía Confocal , Mutación , Hojas de la Planta/microbiología , Percepción de Quorum , Virulencia , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidad
18.
Electron. j. biotechnol ; 9(3)June 2006. ilus
Artículo en Inglés | LILACS | ID: lil-448831

RESUMEN

Xanthomonas axonopodis pathovar citri (Xac) causes bacterial citrus canker, a serious disease of most citrus species. Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot disease in cruciferous plants. In Xcc, cell-cell signaling is mediated by diffusible signal factor (DSF). Synthesis of DSF depends on RpfB and RpfF. DSF perception and signal transduction have been suggested to involve a two-component system comprising RpfC and RpfG. It has been proposed that these proteins participate in a signal transduction system linking changes in the environment to the synthesis of DSF and the expression of virulence genes. Although the cluster of the rpf genes in Xac has synteny with the corresponding cluster in Xcc, two genes (rpfH and rpfI) are absent in Xac. To investigate DSF-mediated regulation during Xac-Citrus limon interaction, we constructed two strains of Xac, one with a mutation in the rpfF gene, leading to an inability to produce DSF, and one with a mutation in the rpfC gene leading to an overproduction of DSF. These mutants also show decreased levels of extracellular cyclic â-(1,2)-glucans and decreased production of endoglucanase and protease extracellular enzymes. The Xac DSF-deficient rpfF and the DSF-hyper producing rpfC mutants are both severely compromised in their ability to cause canker symptoms in lemon leaves compared to the wild-type. Here we provide evidence that rpf genes in Xac are involved in controlling virulence factors mediated by DSF.

19.
Plant Physiol ; 141(1): 178-87, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16531487

RESUMEN

Xanthan is the major exopolysaccharide secreted by Xanthomonas spp. Despite its diverse roles in bacterial pathogenesis of plants, little is known about the real implication of this molecule in Xanthomonas pathogenesis. In this study we show that in contrast to Xanthomonas campestris pv campestris strain 8004 (wild type), the xanthan minus mutant (strain 8397) and the mutant strain 8396, which is producing truncated xanthan, fail to cause disease in both Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana) plants. In contrast to wild type, 8397 and 8396 strains induce callose deposition in N. benthamiana and Arabidopsis plants. Interestingly, treatment with xanthan but not truncated xanthan, suppresses the accumulation of callose and enhances the susceptibility of both N. benthamiana and Arabidopsis plants to 8397 and 8396 mutant strains. Finally, in concordance, we also show that treatment with an inhibitor of callose deposition previous to infection induces susceptibility to 8397 and 8396 strains. Thus, xanthan suppression effect on callose deposition seems to be important for Xanthomonas infectivity.


Asunto(s)
Arabidopsis/microbiología , Glucanos/metabolismo , Nicotiana/microbiología , Polisacáridos Bacterianos/farmacología , Xanthomonas campestris/patogenicidad , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Desoxiglucosa/farmacología , Necrosis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/fisiología , Eliminación de Secuencia , Nicotiana/efectos de los fármacos , Nicotiana/fisiología
20.
Plant J ; 44(1): 37-51, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16167894

RESUMEN

Cultivated and wild potatoes contain a major disease-resistance cluster on the short arm of chromosome V, including the R1 resistance (R) gene against potato late blight. To explore the functional and evolutionary significance of clustering in the generation of novel disease-resistance genes, we constructed three approximately 1 Mb physical maps in the R1 gene region, one for each of the three genomes (haplotypes) of allohexaploid Solanum demissum, the wild potato progenitor of the R1 locus. Totals of 691, 919 and 559 kb were sequenced for each haplotype, and three distinct resistance-gene families were identified, one homologous to the potato R1 gene and two others homologous to either the Prf or the Bs4 R-gene of tomato. The regions with R1 homologues are highly divergent among the three haplotypes, in contrast to the conserved flanking non-resistance gene regions. The R1 locus shows dramatic variation in overall length and R1 homologue number among the three haplotypes. Sequence comparisons of the R1 homologues show that they form three distinct clades in a distance tree. Frequent sequence exchanges were detected among R1 homologues within each clade, but not among those in different clades. These frequent sequence exchanges homogenized the intron sequences of homologues within each clade, but did not homogenize the coding sequences. Our results suggest that the R1 homologues represent three independent groups of fast-evolving type I resistance genes, characterized by chimeric structures resulting from frequent sequence exchanges among group members. Such genes were first identified among clustered RGC2 genes in lettuce, where they were distinguished from slow-evolving type II R-genes. Our findings at the R1 locus in S. demissum may indicate that a common or similar mechanism underlies the previously reported differentiation of type I and type II R-genes and the differentiation of type I R-genes into distinct groups, identified here.


Asunto(s)
Evolución Molecular , Genes de Plantas/genética , Variación Genética/genética , Haplotipos , Familia de Multigenes/genética , Enfermedades de las Plantas/genética , Solanum/genética , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , Secuencia Conservada/genética , Intrones/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Solanum/metabolismo , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...